
REVIEW

Mitochondrial Dysfunction and Biogenesis in Neurodegenerative
diseases: Pathogenesis and Treatment

Mojtaba Golpich,1 Elham Amini,1 Zahurin Mohamed,2 Raymond Azman Ali,1 Norlinah Mohamed Ibrahim1 &
Abolhassan Ahmadiani3

1 Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia

2 Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

3 Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Keywords

Mitochondrial Biogenesis; Mitochondrial

complexes; Mitochondrial Dysfunction;

Neurodegenerative Diseases; Pathogenesis;

Treatment.

Correspondence

A. Ahmadiani, Neuroscience Research Center,

Shahid Beheshti University of Medical

Sciences, Daneshjoo Blvd, Evin Ave, P.O. Box:

19615-1178, Tehran 1983963113, Iran.

Tel.: +9821-22429765-9;

Fax: +9821-22431624 & +9821-22432047;

E-mail: aahmadiani@yahoo.com

and

N. Mohamed Ibrahim, Department of

Medicine, Universiti Kebangsaan Malaysia

Medical Centre, Cheras, 56000 Kuala Lumpur,

Malaysia.

Tel.: +603-91456074;

Fax: +603-91456640;

E-mail: norlinah@ppukm.ukm.my

Received 2 July 2016; revision 29 September

2016; accepted 4 October 2016

doi: 10.1111/cns.12655

The first two authors contributed equally to

this work.

SUMMARY

Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and

characterized by the progressive degeneration of the function and structure of the central

nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the

umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of

their high energy requirements, neurons are especially vulnerable to injury and death from

dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die

because they can no longer produce enough energy. Several lines of pathological and physi-

ological evidence reveal that impaired mitochondrial function and dynamics play crucial

roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the

major intracellular organelles that regulate both cell survival and death, they are highly

considered as a potential target for pharmacological-based therapies. The purpose of this

review was to present the current status of our knowledge and understanding of the

involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases

including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD),

and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a

potential novel therapeutic target for their treatment. Likewise, we highlight a concise over-

view of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as

mitochondrial biogenesis regulators regarding those diseases.

Introduction

Mitochondria play important roles in cell respiratory processes,

metabolism, energy production, intracellular signaling, free radi-

cal production, and apoptosis [1,2]. These super dynamic orga-

nelles can change their morphology, number and function in

reaction to physiological situations, and stressors like hormones,

diet, temperature, and exercise [2]. Many lines of evidence sug-

gest that mitochondria can critically regulate cell death and sur-

vival, play an essential role in aging, and are one of the key

features of neurodegeneration [3]. In the central nervous system

(CNS), sufficient energy supply which required for neuronal sur-

vival and excitability is mostly dependent on mitochondrial

sources; therefore, brain is much more vulnerable to mitochon-

drial dysfunction [4]. Appropriate function of mitochondria is fun-

damental for activation of proper stress reactions and

maintenance of metabolic homeostasis that have been implicated

in life span extension and aging [5]. Cellular programs do the task

of maintenance of mitochondrial quality and integrity by moni-

toring and substituting dysfunctional mitochondria with new
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organelles [6]. They necessitate the replication and transcription

of mitochondrial protein synthesis, mitochondrial DNA (mtDNA),

and separate structural events in the cytoplasm, such as mito-

chondrial proliferation, mitochondrial autophagy (mitophagy),

and mitochondrial fusion/fission [7].

Mutations of mtDNA [8], changed mitochondrial dynamics (mi-

tochondrial fusion/fission, movement, morphology, size, and

transport), gene mutations [9], and impaired transcription con-

tribute to mitochondrial dysfunction which results in bioenerget-

ics defects [10]. There are several evidences that prove the

importance of the mitochondrial dysfunction in the pathogenesis

of diseases such as neurodegenerative disorders [3,11,12]. In addi-

tion to this, studies proved that mitochondria have an association

with mutated proteins in neurodegenerative diseases [10]. Like-

wise, there is an interaction between mitochondria and a remark-

able amount of disease-specific proteins linked with genetic forms

of neurodegenerative diseases. Therefore, treatments targeting at

fundamental mitochondrial processes, such as free radical genera-

tion or energy metabolism and particular relations of mitochon-

dria with disease-related proteins, show great potential [3].

Mitochondrial Biology and Dynamics

As dynamic organelles, mitochondria are vital for cellular death,

life, and differentiation. These also involve in several functions,

such as iron/sulfur cluster, amino acid synthesis, and fatty acid

metabolism, [13]. While they are best recognized for production

of adenosine triphosphate (ATP) through oxidative phosphoryla-

tion (OXPHOS), they contain numerous other biochemical path-

ways and also are centers for ion homeostasis [14]. Electron and

proton transport is partly done by macromolecular protein com-

plexes, whose subunits are encoded by both mitochondrial and

nuclear DNA [13]. Complexes I and III are process main sites in

the mitochondrial respiratory chain (RC) [15]. Since its sequenc-

ing, 13 proteins encrypted by the mitochondrial genome have

been identified and linked to a range of maternally inherited dis-

orders. There are about 1500 mitochondrial proteins encoded by

nucleus, although less than half were found with experimental

attempts. A molecular framework is provided by a whole inven-

tory of protein for this organelle across tissues for the investigation

of mitochondrial pathogenesis and biology [14].

There are two important, opposite forces including mitochon-

drial fusion and mitochondrial fission which maintain the growth,

shape, distribution, and structure of mitochondria [16,17]. The

fusion and fission of mitochondria at the organellar level is the

primary pathway of quality control (QC), which is vital when the

molecular pathways are overpowered [13]. Repetitive cycles of

mitochondrial fission and fusion machinery regulate the mito-

chondria morphology and are crucial for mitochondrial dynamics

[18]. Furthermore, mitochondrial dynamics enable the mitochon-

drial function maintenance and are involved in a mitochondrial

QC system by separation or mixing of contents. Various qualities

of stress cause various responses from the mitochondrial fission/

fusion machinery: low stress triggers mitochondria fusion, pro-

longed or high stress favors fission [13]. The mitochondrial fission

1 (Fis1) and dynamin-related protein (Drp1) control and regulate

fission. The increase in mitochondrial free radicals activates Fis1,

which is critical for mitochondrial fission. In contrast,

mitochondrial fusion is controlled by three guanosine triphos-

phatase (GTPase) proteins: two outer membrane localized proteins

mitofusin 1 and 2 (Mfn1 and Mfn2) and an inner membrane

localized protein optic atrophy 1 (Opa1) [16] (Figure 1).

The balance between fusion and fission rates determines the

mitochondria lengths and the degree to which they form closed

networks. Pathogenic and metabolic conditions within mitochon-

dria and their cellular environment have effects on these rates

[17]. The disproportion between fusion and fission in the mito-

chondria brings about functional changes, including increased

lipid peroxidation, increased reactive oxygen species (ROS) pro-

duction, decreased membrane potential, decreased respiration,

and lower ATP production [16]. The clarification of this network

helps understanding the multifaceted biological processes, for

example, aging [13]. According to the literature, mitochondria’s

structural changes, including decreased mitochondrial mixing (fu-

sion) and increased mitochondrial fragmentation (fission), are

important factors linked with cell death and mitochondrial dys-

function in aging-related diseases and neurodegenerative diseases

[19] (Figure 1).

Mitochondrial fragmentation is the disintegration of one mito-

chondrion after toxins are applied to the cell and/or when the cell

expresses mutant protein(s). This is different from mitochondrial

division that is the normal division of a single mitochondrion into

two; however, mtDNA synthesis happens in both processes [16].

This abnormality and dysfunction of mitochondrial dynamics hap-

pens selectively in the most common chronic age-related and pro-

teopathic neurodegenerative diseases which their manifestation

occurred in the brain including Alzheimer’s disease (AD) [20],

Parkinson’s disease (PD) [21], Huntington’s disease (HD) [22],

and amyotrophic lateral sclerosis (ALS) [23]. Early recognition of

mitochondrial dysfunction and abnormal mitochondrial dynamics

enables us to interfere in disease processes to restrict disease

effects and to change disease progression [16].

Recently, it has been shown that there is a link between mito-

phagy and mitochondrial dynamics in terms of function [24,25].

Furthermore, mitochondrial fusion and fission have significant

parts in disease-related processes, such as mitophagy and apopto-

sis [17]. The segregation of impaired mitochondria due to fission

and consequent inhibition of their fusion mechanism is hypothe-

sized to be a requirement for mitophagic degradation [13]. Finally,

it dysfunctional and damaged mitochondria can be removed from

the vital network of mitochondria via mitophagy process. This

process is seen as representing a very specific pathway of QC that

has significant biological relevance and performs at the organellar

level [26]. Mitophagy impairments lead to the development of

several diseases, such as AD [27], PD [28], HD [29], and ALS [30].

Mitochondrial Dysfunction and
Neurodegenerative Diseases

As organelles of eukaryotic cells, mitochondria have several func-

tions, such as synthesis of ATP through energy transduction. On

the other hand, ROS are made as by-products of this process

which may damage different types of molecules causing mito-

chondrial dysfunction. Therefore, mitochondrial activity is a dou-

ble-edged sword which can be both potentially dangerous and

essential [13]. Some mitochondrial abnormalities were recognized
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in animal and human models with the metabolic syndrome, such

as lower mitochondrial mass [31], altered mitochondrial morphol-

ogy [32], reduced fatty acid oxidation [33], overproduction of

ROS [34], and reduced mitochondrial OXPHOS [35,36]. More

than 50 diseases are caused by mitochondrial dysfunction: from

neonatal fatalities to cancer [37] and type II diabetes [38], and it is

also a possible cause of neurodegenerative diseases [14]. Litera-

ture indicates that atypical mitochondrial functions, such as accu-

mulation of mutations that impair mitochondrial protein

synthesis occurred in infant mortalities [39]. In addition, mito-

chondrial decline and mtDNA damage which play crucial roles in

the etiology of cancer fall into three main classes: (1) increased

accumulation of mtDNA deficiencies, (2) increased mitochondrial

oxidative stress and ROS production without ATP depletion, and

(3) inhibition of OXPHOS by mtDNA mutations [40]. Likewise,

type II diabetes has been related to accumulation of mtDNA pro-

teins synthesis mutations, increased accumulation of mtDNA

defects, down regulation of mitochondrial function and gene

expression, increased mitochondrial ROS production with ATP

depletion, and decreased mitochondrial OXPHOS [41]. Moreover,

multiple line of evidence indicated that impaired calcium influx,

dissipation of mitochondrial membrane potential, accumulation

of mutant proteins in mitochondria, increased accumulation of

mtDNA deficiencies, and deficiencies in mitochondrial OXPHOS

are significant cellular changes in late-onset neurodegenerative

diseases [19] (Table 1).

As mentioned earlier, the dysfunction of mitochondria is linked

to the aging as an onset of numerous diseases and it has tremen-

dous cellular consequences [42]. Alterations of mitochondrial

activity and number are associated with age-related diseases such

as cancer, diabetes, and neurodegenerative diseases [40]. Impaired

Ca2+ buffering or energy supply, control of apoptosis by mitochon-

dria or increased ROS production can contribute to the progressive

decline of long-lived postmitotic cells, such as neurons [43]. Fur-

thermore, mitochondrial ROS generation is known as key factors

accountable for cell death and disease progression in age-depen-

dent diseases [16]. Regardless of the main link between human

diseases and mitochondrial dysfunction, generally, the molecular

causes for dysfunction are poorly understood or even have not

been identified [2].

Mitochondria contain multiple electron transporters that can

produce a broad network of antioxidant defenses and ROS [44].

Mitochondrial insults, including oxidative damage itself, may lead

to an imbalance between ROS production and removal, causing

net ROS production [45]. The significance of aging of net produc-

tion of mitochondrial ROS is supported by evidence that longevity

is increased by improving mitochondrial antioxidant defenses [3].

Also, mitochondria is said to play a significant role in neurodegen-

erative diseases related to aging. Mitochondria are main con-

trollers of cell death, an important characteristic of

neurodegeneration. Certainly, aging is the highest risk factor for

neurodegenerative diseases, and mitochondria are supposed to

speed up aging by the net production of ROS and accumulation of

mtDNA mutations. It is hypothesized that somatic mutations of

mtDNA developed during aging increase physiological decline that

happens with aging and aging-related neurodegeneration [3].

Generally, neurodegenerative diseases are a heterogeneous

group of disorders characterized by gradually progressive, selective

loss of physiologically or anatomically related neuronal systems.

Prototypical examples of the most common chronic neurodegen-

erative diseases associated with aging and aggregation of mis-

folded proteins are AD, PD, HD, and ALS. Regardless of this

Figure 1 Regulation of mitochondrial quality

control by fission and fusion phenomena.
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heterogeneity, mitochondrial contribution is probably an central

common theme in these disorders [3]. Recently, it was clarified

that oxidative damage and mitochondrial dysfunction are main

factors in neuronal loss [46]. Free radicals, normally created by

mitochondrial respiration, result in oxidative impairment of pro-

teins, carbohydrates, nucleic acids, and lipids. Nevertheless, the

mechanism of neuronal death due to oxidative damage is not clear

[47]. Cellular injuries, such as oxidative stress, may damage the

capacity of cell to make adequate ATP for homeostasis, eventually

resulting in necrosis or apoptosis [7]. In several neurological dis-

eases, mitochondrial defects and/or dysfunction in mtDNA are

associated with neurodegeneration. There are studies on the role

of mitochondria in controlling pathways of apoptotic cell death

due to neurodegenerative disease. There is evidence that in brains

of patients with neurodegenerative diseases, mitochondria

become dysfunctional in tissue by reducing ATP supply and

energy production, enhancing generation of ROS, change in cal-

cium buffering, and opening of the mitochondrial permeability

transition pore (mPTP) [18].

The majority of ROS production generated in cells by mitochon-

drial metabolism which implicated in numerous pathological

alterations of the CNS including neurodegeneration [48,49]. As

mitochondrial metabolism is both principal source of free radicals

and high-energy intermediates, it is proposed that acquired or

inherited mitochondrial defects can cause neuronal degeneration

due to oxidative damage and energy defects. Dysfunction of mito-

chondrial respiratory chain was reported related to primary

mtDNA abnormalities, and in nuclear genes mutations that are

directly involved in mitochondrial functions, including para-

plegin, surfeit locus protein 1 (SURF1), and frataxin. Increased

production of free radical and OXPHOS defects have also been

seen in diseases that are not caused by primary abnormalities of

mitochondria. The mitochondrial dysfunction in these cases can

be an epiphenomenon that could be essential in precipitating a

cascade of events causing cell death. Understanding the mitochon-

dria role in the pathogenesis of neurodegenerative diseases can be

important for the development of therapeutic strategies in these

disorders [50]. Increasing evidence reveals a dominant fundamen-

tal role of mitochondrial dysfunction in the neurodegenerative

disorders’ pathogenesis, including AD, PD, HD, and ALS

[1,10,16,19] (Table 2).

Mitochondrial Complexes and
Neurodegenerative Diseases

Mitochondria are complex organelles whose dysfunction causes a

broad range of diseases [14]. Several studies illustrated that dele-

tions or mutations of single complex subunits, including complex

I (NADH dehydrogenase), complex II (succinate dehydrogenase),

complex III (ubiquinol cytochrome C oxidoreductase), complex IV

(cytochrome C oxidase), and complex V (ATP synthase) [69]

might have an important effect on the entire complex formation

and highlighted the significance of genome coordination for

appropriate complex function and assembly [42]. Mitochondrial

functions are changed in brains of individuals with certain neu-

rodegenerative disorders [70,71]. Dysfunction of mitochondrial

electron transport chain (ETC.) complexes has been associated

with the pathogenesis of the most common chronic age-related

neurodegenerative diseases which associated with misfolding pro-

tein aggregation including AD, PD, HD, and ALS [47,72,73]. It is

highlighted that the accumulation of mutant aggregate-prone pro-

teins induced by proteasomal inhibition results in impairment of

the mitochondrial respiratory chain complexes activity. In addi-

tion, mitochondrial complex deficiencies have an essential role in

pathogenesis of AD [74], PD [75], HD [71], and ALS [76] (Fig-

ure 2).

Table 1 Mitochondrial dysfunction in several diseases

Disease Mitochondrial abnormalities Reference

Metabolic syndrome Reduction in mitochondrial mass [31–36]

Alteration in mitochondrial morphology

Decrease in fatty acid oxidation

Overproduction of ROS

Reduction in mitochondrial OXPHOS

Neonatal fatalities Accumulation of mutations [39]

Impairment of mitochondrial protein synthesis

Cancer Increased accumulation of mtDNA deficiencies [40]

Increased production of mitochondrial oxidative stress

Increased production of mitochondrial ROS without ATP depletion

Inhibition of OXPHOS by mtDNA mutations

Type II diabetes Accumulation of mtDNA proteins synthesis mutations [41]

Increased accumulation of mtDNA defects

Downregulation of mitochondrial function and gene expression

Increased production of mitochondrial ROS with ATP depletion

Reduction in mitochondrial OXPHOS

Neurodegenerative diseases Impairment of calcium influx [19]

Dissipation of potential mitochondrial membrane

Accumulation of mutant proteins in mitochondria

Increased accumulation of mtDNA deficiencies

Defects of Mitochondrial OXPHOS
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Impairment of the mitochondrial respiratory chain complexes

activity in AD (mitochondrial complex I, III, and IV deficiency),

PD (mitochondrial complex I and IV deficiency), HD (mitochon-

drial complex II, III, and IV deficiency), and ALS, respectively (mi-

tochondrial complex I, II, III, and IV deficiency). The combined

mitochondrial complex deficiencies caused by increase in the

expression of hyperphosphorylated tau and Ab plaques, ma-synu-
clein, mHtt, and mSOD1 result in promoting the accumulation of

aggregated/misfolded of these proteins via the proteasome activity

inhibition in patients with AD, PD, HD, and ALS, respectively.

Mitochondrial respiratory chain complex I catalyzes transfer of

electron from NADH to the ubiquinone pool (Q), with concurrent

vectorial pumping of proton through the inner mitochondrial

membrane [77]. This complex is one of the main sites in which

electrons are released and react with oxygen, resulting in ROS

production, thus causing oxidative stress [78]. Complex I defi-

ciency is among the most frequent reasons of mitochondrial dis-

ease in humans [79]. Mitochondrial respiratory chain complex II

is an essential component of both the Krebs cycle as well as the

mitochondrial respiratory chain, which play a critical role for gen-

erating ATP [80]. This is the only one of the mitochondrial respira-

tory chain complexes that is completely encoded by nuclear

genes. In complex II, additional electrons from succinate are trans-

ferred into the Q [81]. The production or triggering of ROS by the

mitochondrial complex II may have either deleterious or benefi-

cial effects based on the (patho)physiological situation. An

enhanced production of mitochondrial ROS is related to multiple

pathophysiological disorders, such as neurodegenerative diseases

[82]. Mitochondrial respiratory chain complex III channels elec-

trons from the Q to cytochrome c, simultaneously pumping pro-

tons from mitochondrial matrix space into the intermembrane

space [83]. Complex III deficit is a fairly common deficiency of the

OXPHOS system, linked with a broad range of neurological disor-

ders [84]. Mitochondrial respiratory chain complex IV or cyto-

chrome c oxidase (COX) is the terminal complex of the electron

transport chain. It catalyzes the electron transfer from cytochrome

c to reduce molecular oxygen (O2) and form two molecules of

water in a reaction that is coupled to proton pumping across the

inner mitochondrial membrane. Complex IV deficiencies result in

several human clinical phenotypes, with unclear molecular mech-

anism [85]. Mitochondrial respiratory chain complex V is the fifth

enzyme of the OXPHOS system located in the mitochondrial inner

membrane [86]. In the mitochondrial matrix, it synthesizes ATP

from adenosine diphosphate (ADP) using energy provided by the

proton electrochemical gradient [87]. Most individuals with com-

plex V deficit had clinical onset in the neonatal period with multi-

organ failure or severe brain damage leading to a high mortality,

such as cardiomyopathy and neuromuscular disorders [86].

Mitochondrial Biogenesis and
Neurodegenerative Diseases

Mitochondrial biogenesis assumes a critical part to keep mito-

chondrial homeostasis during the mitochondria life cycle and

finally meet the physiological demands of eukaryotic cells [20]. It

is proposed that sequential loss of mtDNA amount in long-term

Table 2 Main causes of the mitochondrial dysfunction in the most common neurodegenerative diseases

Disease Abnormalities result in mitochondrial dysfunction Reference

AD Deposition of Ab within mitochondria in the brain of patients with AD [51–54]

Impairment of mitochondrial OXPHOS in the brain of patients with AD

Downregulation of PGC-1 in the brain of patients with AD

Modulation of Ab aggregation cascade through PPAR-c dysregulation

PD Significant reduction in ATP in the putamen and midbrain [21,55–58]

Significant reduction in PCr in the putamen

Enhanced formation of free radicals

Induction of permeability transition

Impairment of intracellular calcium homeostasis

Induction of Oxidative Stress

Downregulation of PGC-1 in the brain of patients with PD

Development of neurodegeneration through PPAR-c dysregulation

HD Impairment of mitochondrial function by mHtt [59–63]

Downregulation of PGC-1 and its downstream genes

Suppression of PPAR-c activity by recruitment into Htt aggregates

ALS Decrease in mitochondrial Ca2+ capacity [64–68]

Alteration of axonal mitochondria distribution

Alteration in mitochondrial morphology

Enhanced production of mitochondrial ROS

Defects of mitochondrial respiration in the CNS and muscles of patients with ALS

Defects of ATP production in the CNS and muscles of patients with ALS

Reduction in mtDNA copy number

Deficiencies in activity of respiratory chain

Downregulation of PGC-1 and its downstream genes

Increases in several miRNAs involved in neuromuscular junction and skeletal muscle regeneration

Development of neuroinflammation as a ALS hallmark, through PPAR-c dysregulation
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focal cerebral ischemia points to the failure of mitochondrial

renewal mechanisms. Moreover, strong research evidence recom-

mends a probable reduction in ROS production by the biogenesis

of a significant density of functional mitochondria [88]. As a

highly regulated process, mitochondrial biogenesis requires the

participation of both the mitochondrial and nuclear genomes and

happens frequently in healthy cells that continually divide and

fuse with each other, while in unhealthy cells, division (fission) is

leading and after cerebral insults, the mitochondrial network frag-

ments [18]. Increased biogenesis is compatible with the mtDNA

copy number and enhanced mitochondrial gene expression. The

gene expression profile associated with mitochondrial biogenesis

includes peroxisome proliferator-activated receptor-c coactivator

1 alpha (PGC-1a), mitochondrial transcription factor A (TFAM),

nuclear respiratory factor 1 and 2 (NRF1 and NRF2), and mito-

chondrial transcription factor B1 (TFB1M), [89].

As mitochondria are not synthesized from the beginning, they

should proliferate from the ones already existing to keep biogene-

sis [6]. Their biogenesis appears to be controlled via several pro-

cesses, including (1) synthesis of outer and inner mitochondrial

membranes, (2) synthesis of mitochondrial proteins, (3) synthesis

and import of proteins encoded by the nuclear genome, (4) lipid

import, (5) oxidative phosphorylation, (6) replication of mtDNA,

and (7) mitochondrial fusion and fission [6,90]. Usually, alter-

ations in physiological state including enhanced rates of ATP con-

sumption activate mitochondrial biogenesis for approaching the

existing cells capacity to generate it. Some of the main triggers of

mitochondrial biogenesis include cell division and repair, embry-

onic development, alterations in physiological state such as sym-

pathetic stimulation, calorie restriction, exercise, cold stress,

energy limitation, hormones (thyroid hormone, leptin, and ery-

thropoietin), and mitochondrial disease/damage such as inflam-

mation, hypoxia/ischemia, and oxidative/nitrosative stress [7].

Mitochondrial damage is reflected by mtDNA impairment and by

a decrease in mitochondrial function, mitochondrial RNA

(mtRNA) transcripts, and protein synthesis [18].

Multiple investigations offer that disruption of mitochondrial

function considered as a critical cause in the pathophysiology of

numerous neurological disorders, and adaptive mitochondrial

biogenesis has been studied in the nervous system [91].

Reduced mtDNA/nDNA ratio also shows a decreased mitochon-

drial biogenesis. It is highlighted that impaired mitochondrial

biogenesis potentially contributes to the mitochondrial dysfunc-

tion and has a significant role in the pathogenesis of the neu-

rodegenerative diseases. Likewise, it should be noted that genes

encoding proteins which play a key role in mitochondrial bio-

genesis are linked with those diseases [20]. Taken together,

induction or improvement of mitochondrial biogenesis may be

considered as a novel therapeutic target and confirm a modern

neuroprotective approach for most of diseases such as neurode-

generative diseases including AD, PD, HD, and ALS in the near

future [92] (Figure 3).

Mitochondrial biogenesis as a potential therapeutic approach

may use to induce neuroprotection through alleviation of the

Figure 2 Mitochondrial complex defects in pathogenesis of AD, PD, HD, and ALS.
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mitochondrial complexes deficiencies that induced by the expres-

sion of hyperphosphorylated tau and Ab plaques, ma-synuclein,
mHtt, and mSOD1 in AD, PD, HD, and ALS, respectively. This

neuroprotective strategy results in promoting the degradation of

aggregated/misfolded of these proteins via the proteasome activity

induction.

Transcriptional Approaches to Improve
Mitochondrial Function

There are limited number of studies on neuronal mitochondrial

biogenesis, but research on other tissues and model systems shows

a series of signal transduction proteins, transcription factors, and

transcription co-activators should play their crucial roles to regu-

late mitochondrial mass and number inside neurons [43]. Main-

taining effective metabolic output is essentially dependent on

regulation of the complex protein-folding environment inside the

organelle. Dysregulation of protein homeostasis happens over

time via stress induced by the accumulation of ROS and mutations

in the mitochondrial genome introduced during replication [42].

Major challenges in cell biology are recognizing all the proteins in

this organelle and understanding how they involved in pathways

[14]. The dynamics of mitochondrial function and biogenesis is a

complex interplay of cellular and molecular processes that ulti-

mately shape bioenergetics capacity. Mitochondrial mass, by itself,

represents the net balance between rates of biogenesis and degra-

dation [93].

Mitochondrial biogenesis is dependent on different signaling

cascades and transcriptional complexes that promote the forma-

tion and assembly of mitochondria. It is a process that is heavily

dependent on timely and coordinated transcriptional control of

genes encoding for mitochondrial proteins [93]. Biogenesis of

mitochondria is regulated mostly at the transcription level, and

several nuclear-encoded mitochondrial genes should be expressed

in coordination with the 13 mitochondrial-encoded genes. This

synchronized bigenomic program comprises of nuclear-encoded

mitochondrial proteins that regulate mtDNA replication as well as

transcription and also necessitates the induction of mitochondrial

DNA polymerase (Polc), TFAM, and mitochondrial transcription

factor B2 (TFB2M) [94,95]. Also, the nuclear regulation mecha-

nisms cause the tissue induction and signal specific subsets of

genes that serve particular functions. Most of the mitochondrial

proteome is assigned to lineage-specific proteins; therefore, the

transcriptional program corresponds to the cell’s mitochondrial

phenotype and mass to the functions of each tissue and the physi-

ological energy requirements [7].

PGC-1 family members (e.g., PGC-1a and PGC-1b) coactivate

genes encoding proteins for transcription and replication of

mtDNA as well as importation of mitochondrial protein

[7,94,96,97]. They also have contribution in the physiological

Figure 3 Mitochondrial biogenesis as a novel therapeutic target in treatment of AD, PD, HD, and ALS.

ª 2016 John Wiley & Sons Ltd CNS Neuroscience & Therapeutics 23 (2017) 5–22 11

M. Golpich et al. Mitochondrial Dysfunction and Biogenesis

 17555949, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cns.12655, W

iley O
nline L

ibrary on [10/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



integration of mitochondrial biogenesis with oxidative metabo-

lism and provide overlapping and amplifying regulation of several

nuclear-encoded mitochondrial genes [98]. As a co-transcriptional

regulation factor, the PGC-1a provokes mitochondrial biogenesis

by activating several transcription factors, including NRF1 and

NRF2. Furthermore, it is called GA-binding protein A (GABPA)

that regulates the expression of multiple nuclear genes to encode

mitochondrial proteins such as TFAM. The TFAM contributes to

the mtDNA maintenance and motivates the replication and tran-

scription of mtDNA as well as PPARs [18,94,99].

As a transcriptional coactivator, PGC-1 functions together with

combination of other transcription factors such as peroxisome

proliferator-activated receptors (PPARs) in the regulation of mito-

chondrial biogenesis. PPARs, in particular PPAR-c, may be a major

signaling pathway involved in neuroinflammation [68]. PPAR-c
as a ligand-activated transcriptional factor is a member of the

nuclear hormone receptor superfamily. It has effect on the activity

or expression of numerous genes in a range of signaling networks,

including insulin sensitivity regulation, cell fates, immune

responses, fatty acid oxidation, glucose homeostasis, cardiovascu-

lar integrity, and redox balance [100]. Likewise, PPAR-c is known

as a main regulatory factor in the target genes modulation with

PPAR response element (PPRE) in their promoters, such as those

encoding for oxidative stress, inflammation (COX-2), inducible

nitric oxide synthase (iNOS), and nuclear factor-kappaB (NF-jB),
and apoptosis [68].

In addition, the threonine/serine AMP-activated protein kinase

(AMPK) is a master regulator of cellular energy homeostasis that

is activated as a consequence of reflecting low energy reserve

[101,102]. It stops the continuous progress of ATP-consuming

reactions and triggers ATP-generating pathways [103]. AMPK

activation results in modulations of several factors like PGC-1a, to
produce ATP, while simultaneously stop energy consumption

[104]. It is indicated that AMPK activation appears to be essential

in the mitochondrial biogenesis [105] through regulating PGC-1a
directly [106] or even indirectly by modulating sirtuin 1 (SIRT1)

activity [101]. It also inhibits the growth-controlling mammalian

target of rapamycin (mTOR) pathway [107,108] by phosphoryla-

tion of the tuberous sclerosis 2 (TSC2) tumor suppressor together

with the tuberous sclerosis 1 (TSC1) [108]. Activation of the

mTOR indicating by Akt/PKB includes the phosphorylation and

inactivation of TSC2 [7]. Moreover, Akt/PKB induces mitochon-

drial biogenesis via the cyclic AMP response element-binding pro-

tein (CREB1) and NRF1 phosphorylation, thus allowing target

gene activation and nuclear translocation [109].

Mitochondrial biogenesis involves other transcription factors

such as sirtuins. Sirtuins (SIRTs) are a family of the nicotinamide

adenine dinucleotide (NAD+)-dependent protein deacetylases

which contribute in numerous cellular processes such as cell cycle,

transcription, energy metabolism, mitochondrial functions, aging,

apoptosis, and cell survival [104,110,111]. There are seven sirtu-

ins for mammalian with different activities which localized to the

nucleus (SIRT1, SIRT6, SIRT7), cytosol (SIRT2), and mitochondria

(SIRT3, SIRT4, and SIRT5) [111]. There are several evidence to

suggest that sirtuins as the transcriptional regulators may have

potential therapeutic effects on a several chronic age-related and

aggregate-forming neurodegenerative diseases including AD, PD,

HD, and ALS. Sirtuins can influence the progression of

neurodegenerative disorders by modulating transcription factor

activity [110–112]. It is indicated that SIRT1 induces mitochon-

drial biogenesis by activating the master regulator PGC-1a [43].

Furthermore, SIRT3 which interacts with mitochondrial complex

I is another novel therapeutic target for neurodegenerative dis-

eases [104]. SIRT3 as a downstream target gene of PGC-1a medi-

ates downregulation of the PGC-1a-dependent intracellular ROS

production and stimulates mitochondrial biogenesis [113].

There are also many other transcription factors including

orphan nuclear estrogen-related receptors (ERRs) which

expressed by aerobic tissues. For instance, the estrogen-related

receptor alpha (ERRa) is a PGC-1a companion in the genes

expression essential for fatty acid b-oxidation [114,115]. Along

with CREB1, the Ying–Yang 1 (YY1) transcriptional initiator ele-

ment-binding protein plays a part in the constitutive expression of

respiratory and other energy metabolism genes [116,117]. The

myocyte-specific enhancer factor 2A (MEF2A) and the nuclear-

encoded proto-oncogene c-Myc are other important genes for

mitochondrial biogenesis [118]; these are, respectively, activator

of PGC-1b and vital regulator of oxidative capacity in cardiac and

skeletal muscle activated by NRF1 [119]. Moreover, MEF2A con-

tributes to activation of stress-induced genes and growth factor

and also promotes cell survival as well as cell growth [119].

On the other hand, considerable development has been made

in expanding mitochondria-targeted antioxidants, as dysregula-

tion of protein homeostasis induced by the accumulation of ROS

and mutations in the mitochondrial genome. Antioxidants protect

neurons against mitochondrial functional and structural abnor-

malities, oxidative damage, and mutant proteins [120]. In the last

decade, several antioxidants have been developed such as mito-

quinone (MitoQ) as the triphenylphosphonium-based antioxidant

as well as Szeto-Schiller 31 and 20 peptides (SS31 and SS20 pep-

tides) as the small peptide-based antioxidants which bind to the

inner mitochondrial membrane [120–122].

MitoQ is a form of coenzyme Q which considered as a potential

therapeutic antioxidant to protect against mitochondrial oxidative

damage by reducing free radicals such as ROS [123] and lead to

the neuroprotection against age-related mitochondrial insults

[124]. Dumont and his colleagues indicated that MitoQ therapy

reduces b-amyloid plaque number and area, amyloid beta-42 (Ab-
42) levels, and brain oxidative stress, as well as improves cognition

in a transgenic mouse model of AD [125]. Furthermore, it was

found that the combination of creatine and MitoQ shows potential

neuroprotective impacts on the 1-methyl-4-phenyl-1,2,3,6-tetra-

hydropyridine (MPTP) model of PD [126]. In addition, administra-

tion of MitoQ could extend cell survival and ameliorate motor

performance and brain atrophy in a transgenic mouse model of

HD [127]. Also, Miquel and his colleagues found modest neuro-

protective effects of MitoQ in a mouse model of ALS [128].

Likewise, SS31 and SS20 antioxidant peptides represent a novel

therapeutic approach that can scavenge mitochondrial free radi-

cals including ROS and results in inhibition of mitochondrial per-

meability transition and cytochrome c release which prevents

oxidant-induced cell death [104,129,130]. Recently, preclinical

studies support potential use of the mitochondria-targeted antiox-

idants as an effective treatment for neurodegenerative disorders

[131]. Manczak and her colleagues stated that SS31 prevents Ab
toxicity as well as decreases learning and memory deficits and

12 CNS Neuroscience & Therapeutics 23 (2017) 5–22 ª 2016 John Wiley & Sons Ltd
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may consider as a potential treatment for AD [132]. Moreover,

SS31 and SS20 demonstrated significant neuroprotective effects

on dopaminergic neurons of MPTP-treated mice [133]. Likewise,

SS31 may use for HD therapy by promoting mitochondrial func-

tion and neuronal viability [134]. Additionally, SS31 is a novel

therapeutic approach to treat neuronal damage induced by oxida-

tive stress in a mouse model of ALS. It targets the ROS production

at the inner mitochondrial membrane and prevents further mito-

chondrial damage [122].

AD

AD is the most common neurodegenerative disorder marked by

progressive loss of memory, characterized by the increased pres-

ence of extraneuronal amyloid plaques derived from the prote-

olytic processing of the amyloid precursor protein (APP) and

intraneuronal neurofibrillary tangles (NFTs) made from hyper-

phosphorylated tau protein (pTau) in the brain. Plaques comprise

amyloid beta (Ab) fibrils that assemble from monomeric and oli-

gomeric intermediates, and are prognostic indicators of AD [135–

137]. Recent evidence indicates that mitochondrial dysfunction is

a noticeable and early feature of AD with lower energy metabo-

lism as one of the best known primary abnormalities in this dis-

ease [20]. They state that intervention at the mitochondrial level

could improve Ab triggered degeneration and dysfunction. This is

proved by the in vivo evidence of Ab accumulation inside mito-

chondria in the brain of patients with AD [51,52]. A plenty of evi-

dence declare that levels of mitochondrial Ab are related to the

degree of cognitive impairment as well as the extent of mitochon-

drial dysfunction in different regions of brain in AD [51,52,138].

Deposition of Ab1–40/1–42 in AD cybrids can raise likelihood of

mitochondrial dysfunction as well as cell death [51], but the

mechanism of Ab-mediated mitochondrial dysfunction possibly

causing neuronal disorder is not exactly clear yet [52]. Addition-

ally, the mitochondrial OXPHOS impairment has been described

in the brain of patients with AD by Hauptmann and his colleagues

[52]. Interestingly, several researches have shown that PGC-1a as

a transcriptional coactivator serves as a regulator of Ab generation

because it affects b-secretase (BACE1) degradation. PGC-1a has

been shown to play a significant role in energy metabolism by

controlling mitochondrial function in several tissues. The PGC-1

expression considerably reduced in the brain of patients with AD

and was involved in the pathological generation of Ab by influ-

encing the processing of APP; in part by increasing the a-secretase
activity [53]. Furthermore, Camacho and his colleagues stated

that PPAR-c can be contributing to the modulation of Ab aggrega-

tion cascade leading to neurodegeneration in Alzheimer’s disease

[54] (Table 2).

Multiple documents recommended that mitochondrial dysfunc-

tion, particularly, deficiencies in mitochondrial respiratory chain

complex I has been considered a potential unifying factor in

pathogenesis of the neurodegenerative disorders including AD

[56,139,140]. Moreover, intracellular NFTs comprised of hyper-

phosphorylated tau protein as well as extracellular Ab plaques

represent the major hallmarks of AD. Hyperphosphorylated forms

of tau selectively impair complex I, lead to increased ROS levels,

and result in reduced levels of ATP [141–143]. Clinical and experi-

mental observations suggest that complex I inhibition could

contribute to pathogenic mechanisms in some sporadic tauopa-

thies [74] (Figure 2). Furthermore, reduced activity of mitochon-

drial enzymes, such as complex III, has been reported. Similarly,

the mitochondrial complex IV activity is decreased by 70% in

patients with AD, which is related to the excitotoxic cell death. It

has been stated that a reduction in complex IV activity in the brain

associated with aging [72] (Figure 2).

Likewise, it is believed that glutamate excitotoxicity happens in

chronic neurodegenerative diseases such as AD [47,72,73]. Insuf-

ficient control over glutamate release as a result of mitochondrial

complex IV and III deficiency can lead to neuronal cell death. Glu-

tamate release happens mainly through reversal of glutamate

transporters of plasma membrane during severe energy stress.

Reduction in intracellular ATP leads to depolarization of Ca2+ and

plasma membrane in glutamate release of from the cytoplasmic

pool [72]. The accumulation of mtDNA mutations could be at the

origin of ETC. malfunction [3,144]. Moreover, Costa and his col-

leagues showed that mitochondrial dysfunction has effect on the

stress response of endoplasmic reticulum (ER) activated by Ab
peptide (Ab1–40 isoform) [51,52]. Postmortem research on the

AD brain showed that activity of complex IV decreased by 52% in

the hippocampus, by 37% in the temporal cortex, and by 27% in

the cerebral cortex [72].

The status of this vital feature of mitochondrial function and life

in AD is not clear [20,43]. While increased mtDNA, ETC. gene

expression and ETC. protein were seen in AD brain [43,145],

other studies alternatively indicate a reduction in those in brain of

patients with AD [43,146]. Upregulated ETC. genes expression

happens in mutant APP transgenic mice and decreased Ab levels

induce mitochondrial biogenesis [147]. Possibly, in different

stages of disease, neurons exhibit different forms of mitochondrial

biogenesis [148]. It was indicated that Ab oligomers induce oxida-

tive stress and mitochondria dysfunction, which provoke tau pro-

tein hyperphosphorylation and NFTs formation. These events

close in on tau protein aggregation and autophagic dysfunction

and then lead to neurodegeneration and cell death in AD [149]

(Figure 4). Moreover, it was mentioned that expression levels of

genes encoding proteins involved in mitochondrial biogenesis

such as PGC-1a, NRF1, NRF2, and TFAM have been associated

with the neurodegenerative diseases like AD [20]. Expression

levels of these genes significantly reduced in both AD hippocam-

pal cells and tissues, proposing a decreased mitochondrial biogen-

esis [20]. Nevertheless, considering the pleiotropic roles of

PGC-1a, it is not clear yet how mitochondrial biogenesis signaling

is changed and whether such changes have a hand in mitochon-

drial dysfunction in AD [20].

Additionally, TFAM plays an important role in the maintenance

of mtDNA integrity [150]. It locates on chromosome 10, on which

many genes have been reported to be associated with sporadic AD

[151]. The moderate likely risk of AD related to TFAM haplotype

and genotypes was found [152]. Also in Caucasians, mutations in

TFAM contributed to the pathogenesis of sporadic late-onset AD

[150]. Moreover, the stimulation of PPAR-c reduces inflammation

in neurological disorders with an inflammatory element such as

AD [54]. Recent evidence indicates that PPAR-c activation modu-

lates Ab production in cellular models relevant to AD. It shows

that PPAR-c agonists downregulate deposition of Ab that happens

in AD, while its mechanism is still controversial [153]. Together
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with this fact, it is hopefully predicted that PPAR-c may apply as a

drug target for the management of neurological disorders like AD

[54]. Furthermore, inducing mitochondrial biogenesis by AMPK

activation considered as a therapeutic target for AD [154]. In addi-

tion, activation of SIRT1 in brain protects against learning impair-

ments and hippocampal degeneration by decreasing the

acetylation of the SIRT1 substrates such as PGC-1a which results

in PGC-1a activation and also reduction in amyloid pathology in a

mouse model of AD [155]. Overall, this data demonstrated mito-

chondrial biogenesis induction decreases mitochondria dysfunc-

tion. Based on data mentioned above, the impaired mitochondrial

biogenesis has been suggested as underlying factor in mitochon-

drial dysfunction in AD and increasing mitochondrial biogenesis

may represent a possible pharmacologic strategies for the AD

treatment [20].

PD

PD is a progressive neurological movement disorder linked to

uncertain etiology having possible effects of genetic-environmen-

tal factors [156]. However, the cellular mechanisms that result in

cell death in the nigrostriatal system in PD are still unclear

[157,158], it is generally accepted that the causes of PD are mainly

mitochondrial dysfunction, oxidative stress, chronic inflamma-

tion, aberrant protein folding, and abnormal protein aggregation

[89,159,160]. The significant reduction in ATP and phosphocre-

atine (PCr) in the putamen and the significant reduction in ATP in

the midbrain as high energy metabolites are indicative of mito-

chondrial dysfunction in the mesostriatal dopaminergic neurons

in early and advanced PD [21]; however, reduction in the ATP

production is not just the outcome of mitochondrial dysfunction.

In addition, there are other potentially deleterious events such as

enhanced formation of free radicals, induction of permeability

transition, impaired intracellular calcium homeostasis, and oxida-

tive stress, which in predispose affected cells to necrosis or apopto-

sis depending on the rate of consumption and depletion of ATP

[55,56]. Prohibition of mitochondrial respiratory chain may result

in incomplete consumption of O2, decreased of ATP, and

increased free radical formation. Free radicals directly inhibit the

respiratory chain of mitochondria, which can cause a detrimental

cycle that results in oxidative cell damage [161]. Several muta-

tions in mitochondrial proteins encoded by nuclear and mito-

chondrial genes were linked with idiopathic and familial types of

PD [71]. A genomewide examination of controls and patients with

PD showed that expression of PGC-1a as a master controller of

mitochondrial biogenesis was decreased in patients with PD [57]

and this can confirm vital roles of mitochondrial dysfunction in

the PD pathogenesis. Moreover, dysregulation of PPAR-c is linked
to the development of neurodegenerative diseases with an inflam-

matory component-like PD [58] (Table 2).

In this regard, several postmortem studies have shown a mean-

ingful decline in the mitochondrial complex I activity as well as

coenzyme Q10, ubiquinone, and also complex IV in the substantia

nigra of PD brains [162–164] (Figure 2). Complex I deficit is the

most common cause of rare diseases of respiratory chain [14] as

well as endogenous and environmental oxidative stressors under-

lying mitochondrial dysfunction observed in neurodegenerative

diseases including PD [89,164]. The latest study revealed that

activity of complex I is decreased in postmortem brain tissue of

patients with PD as a consequence of oxidative damage that leads

to instability and loss through degradation of at least one subunit

[164]. Particularly, loss of activity of complex I at the mitochon-

drial ETC. has been observed in idiopathic PD [165]. Activity of

complex I is decreased in the substantia nigra of patients with PD,

which may encourage the accumulation of protein inclusions

(Lewy bodies) containing a-synuclein (a-syn) [166,167].
Moreover, complex I inhibitors including neurotoxins, such as

MPTP which transformed to 1-methyl-4-phenylpyridinium

(MPP+) and 6-hydroxydopamine (6-OHDA), and also pesticides,

like rotenone and paraquat cause neuropathological changes simi-

lar to PD. Studies on postmortem brains of patients with PD sug-

gested that not only levels of numerous mitochondrial proteins

Figure 4 Limitation of the pathological

progression, neurodegeneration, and cell

death in AD through increasing the PGC-1a

activity as a key regulator of the mitochondrial

biogenesis.
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are changed, but also genetic mutations happen in familial PD-

linked genes which may alter mitochondrial function [166]. There

is evidence that mitochondrial dysfunction is a main PD initiator,

because it has been reported that complex I inhibition results in

the formation of a-syn positive cytoplasmic inclusions in cellular

and animal PD models [168]. As the a-syn overexpression causes

parkinsonism together with the nigrostriatal pathway degenera-

tion, the complex I dysfunction is the most probable cause of PD

by modulating the accumulation of misfolded proteins, perhaps

via the proteasome inhibition [75,169] (Figure 2). In animal mod-

els of PD (e.g., rodents and primates), for example, administration

of complex I inhibitors can replicate several key features of spo-

radic PD, comprising of selective degeneration of dopaminergic

neurons in substantia nigra, aggregation and overproduction of a-
syn, accumulation of Lewy body-like intraneuronal inclusions,

increase in ROS generation, and impairment of behavioral func-

tion, which results in irreversible parkinsonism [42,170].

Several lines of evidence represent that the deficit in PD is at or

above the level of PGC-1a expression, which in turn regulates

function of complex I mitochondrial ETC. [171]. Lately, varied

proteins involved in familial PD, including a-syn, parkin, PTEN-
induced putative kinase 1 (PINK1), protein deglycase DJ-1

(parkinson disease protein 7), and leucine-rich repeat kinase 2

(LRRK2 or dardarin), have been associated with quality control

and regulating mitochondrial dynamics [172,173]. In cellular dis-

ease models, PGC-1a activation leads to higher expression of

nuclear-encoded subunits of the mitochondrial respiratory chain

and stops the dopaminergic neuron loss induced by the pesticide

rotenone or mutant a-syn [174]. Interestingly, parkin and PINK1

have been implicated in regulating mitochondrial biogenesis

[175]. Parkin has a part in mitochondrial biogenesis [176,177] by

controlling both replication and transcription of mtDNA in prolif-

erating cells. It increases mitochondrial replication, expressions,

and transcription of respiratory chain complexes [177]. Degrada-

tion of parkin-interacting substrate (PARIS) by parkin raises

expression of PGC-1a-dependent genes and biogenesis of

mitochondria [178]. In a neurotoxin mouse model of PD, PGC-1a
overexpression in neurons was protective [57]. Consequently, loss

of parkin function blocks mitochondrial biogenesis via PARIS

accumulation [179]. On the other hand, PINK1 is processed by

healthy mitochondria and released to trigger neuron differentia-

tion [180]. It is thought to facilitate the binding of parkin protein

into depolarized mitochondria to induce mitophagy/autophagy

and protect cells from stress-induced mitochondrial dysfunction

[181,182]. Gegg and his colleagues reported a vital role of PINK1

in maintaining mitochondrial ETC. activity as well as mitochon-

drial biogenesis. They showed their dysfunction was involved in

sporadic types of PD. Thus, PINK1 expression loss led to reduced

levels of mtDNA, mitochondrial biogenesis and mtDNA synthesis

[183]. Likewise, the mitochondrial protein DJ-1, as an antioxidant

which plays a role in the maintenance of the complex I activity,

has been reported to stabilize Nrf2 [184], but mutations in DJ-1

associated with enhancement of the a-syn aggregation, oxidative

stress, and possibly cellular apoptosis [185]. In addition, mutation

of LRRK2 may result in abnormal phosphorylation of mitochon-

drial proteins which induces apoptotic cell death [185] (Figure 5).

Moreover, there is an association between TFAM and parkin.

As mitochondrial import of parkin was increased in the presence

of mitochondrial extract or TFAM, some proteins including TFAM

have a part in the export and/or the import of parkin [177].

TFAM–parkin complex associated with PD pathogenesis bound to

mtDNA control area and enhanced mitochondrial biogenesis

[177,186]. Additionally, involvement of TFAM as a multifunc-

tional mtDNA metabolism regulator in pathogenesis of PD (in vitro

and in vivo models of PD) directly and indirectly confirmed via

increase in mitochondrial respiratory functions and protection

from oxidative stress [186]. It is also stated that gene therapy

based on transfection of mtDNA-complexed TFAM or recombi-

nant TFAM to cybrid cells of PD led to noticeable improvement of

different mitochondrial functions [186,187]. Furthermore, recent

investigations have described a new role for PPAR-c receptors in

the regulation of inflammation [188]. Regarding with these

Figure 5 Limitation of the pathological

progression, neurodegeneration, and cell

death in PD through increasing the PGC-1a

activity as a key regulator of the mitochondrial

biogenesis.
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reports, PPAR-c agonists have been shown to attenuate inflamma-

tory responses in brain as well as animal models of neurodegener-

ative diseases such as PD which is associated with a considerable

degree of neuroinflammation [189]. Recently, the antiinflamma-

tory role of PPAR-c agonists in mouse models of PD measured by

reductions in both microgliosis and astrogliosis. Thus, PPAR-cmay

be beneficial for treating the brain disorders with an inflammatory

component-like PD [190]. Likewise, it has been suggested that

AMPK activation as a therapeutic approach may promote neuro-

protection in PD by mediating mitochondrial biogenesis [191].

Moreover, a recent article shown that activation of SIRT1 induces

neuroprotection against a-syn aggregation by activating PGC-1a
as well as molecular chaperones in mice model of PD [192].

Indeed, the pathway of mitochondrial biogenesis has come as a

possible healing target for PD.

HD

HD is an inherited and an autosomal dominant disorder character-

ized by psychiatric disturbances, cognitive deterioration, and

motor impairment. HD as a fetal neurodegenerative disease

caused by the development of cytosine–adenine–guanine (CAG,

translated into glutamine) triplet repeats in the huntingtin (Htt)

gene (also called HD) and characterized by accumulation of insol-

uble polyglutamine-containing Htt protein aggregated in affected

neurons [71,193,194]. Mitochondrial dysfunction is strongly asso-

ciated with the pathogenesis of HD [195–197]. Cui and his col-

leagues reported that genetic elimination of PGC-1a increases HD

progression, as measured by the observing striatal neurodegenera-

tion and motor coordination [62], which pinpoints the vital con-

tribution of PGC-1a in HD [196]. Also, it was found that PGC-1a
as a key factor involved in the regulation of multiple pathways

such as mitochondrial biogenesis and OXPHOS is downregulated

in HD [61,62]. Thus, it was suggested that a deficiency in PGC-1a
and downstream genes may lead to mitochondrial dysfunction in

HD, including muscle [198], fat tissue [199], as well as brain

[200]. Likewise, several downstream targets of PGC-1a such as

NRF1 and NRF2, and TFAM can increase the HD mitochondrial

dysfunction [201]. Also, several studies revealed that mutant

huntingtin (mHtt) impaired mitochondrial functions in mHtt-

expressing striatal cells [59,60]. In turn, mHtt expression sup-

presses the PPAR-c transcriptional activity, which is important for

mitochondrial stabilization [63]. Decrease in the available PPAR-c
protein by recruitment into Htt masses results in mitochondrial

dysfunction [61,195,196] (Table 2).

Additionally, it has been indicated that mitochondrial ATP

levels and ETC. activity are reduced in patients with HD [166]. In

late-stage patients with HD, decreased activity of several OXPHOS

components, including mitochondrial complexes II, III, and IV,

has been reported through biochemical research on mitochondria

in striatal neurons [202]. Further, in research on knock-in and

HD transgenic mice as well as experimental models of HD rodent,

reductions of enzyme activities of complexes I, II, III, and IV were

seen in brain tissues [203], suggesting that mitochondria con-

tribute to HD pathogenesis [202]. In addition, significant declines

of mitochondrial activities in complex I, II, III, and IV have been

reported in the neostriatum of HD patients’ brains [202,204]

(Figure 2). Decreases of complex II/III activity happen in the

brain areas affected by the HD pathogenesis; reduced complex II/

III activity in the putamen (by 67%) and caudate (by 29%) was

seen in postmortem brain tissue, and activity of complex IV was

decreased in both regions by 62% and 30%, respectively

[72,205]. The activities of mitochondrial complex III and IV are

linked with excitotoxic cell death and reduced by 30% in this

disorder [72].

Another potential cause of mitochondrial dysfunction in HD

brains is the toxic effects of mutant Htt that result in those changes

in mitochondrial complex activities [71]. In the postmortem on

patients with HD, the main hypothesis behind abnormalities in

the mitochondrial respiratory chain reveals that they are indi-

rectly or directly caused by the toxic mHtt expression [59,148].

On one hand, mHtt produces HD-like symptoms by interrupt

complex II activity and mitochondrial Ca2+ buffering [206]. On

the other hand, expression of mHtt selectively damages the com-

plex III activity and promotes the accumulation of aggregated/

misfolded Htt proteins via the proteasome activity inhibition in

patients with HD (Figure 2). The presence of such feedback sys-

tems, containing mitochondrial complex III, proteasome, and mis-

folded/aggregated Htt proteins suggests that increasing the

mitochondrial respiratory, particularly, activity of complex III, can

slow down or even prevent the HD progression [71,202]. A clue

clarifying the impacts of complex III inhibitors on the Htt aggre-

gates was taken from the evidence that only complex III inhibitors

damaged chymotrypsin-like activity of proteasomes in a ROS-

independent manner. Complex III inhibitors selectively promoted

the accumulation of Htt aggregates. As other respiratory inhibitors

had no considerable effect on the formation of Htt aggregates, the

depletion of ATP does not simply explain the effects of complex III

inhibitors [71,202].

There are several documents about the PGC-1a role in mito-

chondrial impairment in HD and its potential as a therapeutic tar-

get to treat HD [207]. Over the past few years, studies have shown

an impaired function of PGC-1a as a causing of the mitochondrial

dysfunction in HD [207]. Impaired PGC-1a levels and function

happen in transgenic mice and mouse HD models, striatal cell

lines, and also in postmortem brain, myoblasts as well as muscle

tissues of patients with HD [200,208]. Indeed, genetic elimination

of PGC-1a causes enhanced progression of HD, as evaluated by the

observing neuronal neurodegeneration and motor coordination

[62,201], which indicates the important contribution of PGC-1a
in HD [201]. Moreover, several downstream targets (NRF1, NRF2,

and TFAM) of PGC-1a may be involved in the mitochondrial dys-

function of HD [201]. A pathologic grade-dependent significant

decrease in mitochondria numbers in striatal spiny neurons was

shown by Kim et al., which was associated with decreases in

TFAM and PGC-1a [204]. Moreover, significant decreases in

TFAM and PGC-1a have been reported in both myoblast cultures

and muscle biopsies from patients with HD [62,204]. These find-

ings robustly pinpoint decreased expression of PGC-1a in HD

pathogenesis [208].

Interestingly, PGC-1a promoted removal of protein aggregates

and Htt turnover by transcription factor EB (TFEB) activation.

TFEB as a main regulator of the autophagy–lysosome pathway is

able of decreasing neurotoxicity as well as Htt aggregation, placing

PGC-1a upstream of TFEB and recognizing these two molecules as

substantial therapeutic targets in HD and possibly other
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neurodegenerative disorders resulted from protein misfolding

[209] (Figure 6). Quintanilla and his colleagues indicated that

activation of PPAR-c receptors can ameliorate mitochondrial dys-

function in mHtt-expressing cells, which has a significant role in

the HD pathogenesis [195]. PPAR-c agonists prevent oxidative

stress and attenuate dysfunction of mitochondria in mHtt striatal

cells [197] and also challenged with a calcium overload in mHtt-

expressing cells. In addition, PPAR-c agonists enhance oxidative

capacity of phosphorylation in human and mouse cells and

increase mitochondrial biogenesis [210,211]. It was demonstrated

that PPAR-c agonists could represent a new objective for the

advance of therapeutic plans for HD [195]. Likewise, AMPK acti-

vation induces neuroprotection in HD through promoting mito-

chondrial biogenesis and elevating cell survival [111].

Additionally, overexpression of SIRT1 improves motor function

and attenuates mHtt-mediated metabolic abnormalities by activat-

ing PGC-1a in transgenic mouse models of HD [212]. These results

propose that the biogenesis pathway of mitochondria can be a

potential novel therapeutic target for HD treatment.

ALS

ALS is a progressive adult-onset neurodegenerative disorder that

leads to fatal paralysis. Disease in humans and rodent models initi-

ates with muscle denervation and muscle atrophy following den-

ervation, each arising from degeneration and selective loss of

motor neurons in the spinal cord as well as brain [64]. Several

studies reported that in ALS, mitochondria play as a target for tox-

icity through decreased mitochondrial Ca2+ capacity, altered dis-

tribution of axonal mitochondria, abnormal mitochondrial

morphology, elevated levels of mitochondrial ROS production,

deficits in mitochondrial respiration, and ATP production in the

CNS as well as muscles of patients with ALS [64]. Morphological

and biochemical mitochondrial abnormalities including a reduc-

tion in mtDNA copy number and deficiencies in activity of respira-

tory chain were confirmed in postmortem spinal cords of patients

with ALS [65]. Specific damage of muscle or neurons can clearly

be caused by dysfunction of mitochondria, because mutation/

deletion in mitochondrial genes leads to specific muscle and nerve

diseases [66]. In patients with ALS, mitochondrial dysfunction of

skeletal muscle is linked with a decrease in mRNA of the PGC-1a
and PGC-1b, NRF1, ERRa, Mfn1 and Mfn2, and protein content

as well as increases in several miRNAs possibly involved in neuro-

muscular junction and skeletal muscle regeneration. It suggests

that mitochondrial dysfunction in skeletal muscle plays key roles

in the pathogenesis of ALS [67]. In addition, it was reported that

PPAR-c might be a main signaling pathway contributing to neu-

roinflammation, which is considered as one of the hallmarks of

ALS [68] (Table 2).

Several previous studies reported changes in mitochondrial

ETC. activities in ALS [213]. For instance, increased activity of

complex I found in postmortem brain tissue may indicate a com-

pensatory incident against the deficit of complex IV enzymes

encoded by mtDNA which seen in some patients with ALS. Never-

theless, in postmortem spinal cord tissue from sporadic ALS

(sALS) and familial ALS (fALS) cases, a reduction in citrate syn-

thase activity is paralleled by reduction in the activities of com-

plexes I + III, II + III, and IV, which might be seen after a

selective loss of mitochondria in spinal cords or increased damage

of mtDNA [23] (Figure 2). Moreover, higher levels of oxidized

ETC. cofactor Q10 in sALS cerebrospinal fluid and also increased

levels of lactate and ROS in their blood have been seen [214].

Likewise, oxidative stress has contributed as a part of the patho-

genic pathway in ALS and might derive from defective OXPHOS

[215].

In addition, ALS has been linked with over 130 different muta-

tions in the Cu/Zn superoxide dismutase (SOD1) gene, yet this

toxicity mechanism is still controversial. While it is not completely

clear how mitochondria is damaged by mutant SOD1 (mSOD1),

some recent research has revealed that ALS-linked SOD1 muta-

tions are recruited selectively to mitochondria and induce respira-

tory deficiencies [65]. It is also highlighted that accompanying

mSOD1-mediated disease is evidence for alteration of mitochon-

drial calcium-loading capacity, impairment of electron transport

Figure 6 Limitation of the pathological

progression, neurodegeneration, and cell

death in HD through increasing the PGC-1a

activity as a key regulator of the mitochondrial

biogenesis.
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chain activities particularly in complexes III, increase in aberrant

ROS production, and block both protein import at the mitochon-

drial outer membrane and the antiapoptotic actions of B-cell lym-

phoma (2BCL2) [66]. Likewise, changes in the activities of

respiratory chain complexes were defined in sporadic ALS,

exhibiting higher activity of complexes I and II/III in the frontal

cortex of SOD1-related patients with ALS, and reduced activity of

complex IV in the spinal cord and individual spinal motor neurons

[76]. Menzies et al. (2002) reported a particular reduction in

activity of complex IV in motor neurons of spinal cord from spo-

radic cases of ALS [76] (Figure 2).

Denervation-induced muscle atrophy is considered to be an

early event along with changes in mitochondrial morphology and

activity within muscle in ALS [64]. A significant decrease in

mRNA of the PGC-1a and PGC-1b, NRF1, ERRa, Mfn1 and Mfn2,

protein content as well as subunit IV of the COX mRNA and pro-

tein was seen in patients with ALS [67]. In patients with ALS,

mitochondrial dysfunction of skeletal muscle is related to a

decrease in PGC-1a signaling networks involved in mitochondrial

function and biogenesis [67]. The PGC-1a promoted several effects

on muscle, such as enhanced mitochondrial activity and mass

(Figure 7). Mitochondrial activity and biogenesis are retained via

end-stage disease, together with maintenance of muscle function,

delayed muscle atrophy, and considerably improved muscle toler-

ance even at late stages of disease. Nevertheless, survival was not

prolonged; drugs increasing activity of PGC-1a in muscle show a

great treatment for retaining muscle function during ALS progres-

sion [64].

Another possible method to activate the pathway of PGC-1a,
and improving mitochondrial function is through PPARs activa-

tion which interact with PGC-1a and work together with combi-

nation of this transcriptional coactivator in the regulation of

mitochondrial biogenesis [68]. PPAR-dependent self-protective

mechanisms appear to be relevant for survival of ALS motor neu-

rons [216]. PPARs especially PPAR-c may be main regulators of

neuroinflammation signaling seen in ALS and perhaps a new tar-

get for the development of ALS therapeutic strategies. Because

neuroinflammatory pathway is one of the hallmarks of ALS, thus,

neuroinflammation blockage may have a therapeutic effect on

patients with ALS [64,68]. Likewise, inducing mitochondrial bio-

genesis by AMPK activation may present a promising therapeutic

approach in mutant SOD1 mice model of ALS [217]. Recently, it

was also shown that activation of SIRT1 enhances the survival of

motor neurons by activation of PGC-1a in transgenic mice model

of ALS [155]. In addition, a recent article identified that SIRT3

protect against mitochondrial fragmentation and neuronal cell

death in ALS pathogenesis using a cell-based model [111]. Alto-

gether, these observations strongly suggest that fine-tuning PPAR-

c transcriptional activity within the CNS may represent an novel

approach to limit the progression of ALS [216].

Conclusion

As highly dynamic organelles, mitochondria have crucial roles in

cell survival as well as cell death [1,2] and able to alter their mor-

phology, number, and function in reaction to stressors and physi-

ological conditions [2]. The morphology of mitochondria is

controlled by repetitive cycles of mitochondrial fusion and fission

machinery which are central to mitochondrial dynamics [18].

Altered mitochondrial dynamics as well as mDNA mutations [8],

gene mutations [9], impaired transcription contribute to mito-

chondrial dysfunction [10] which results in the pathogenesis of

several diseases [3,11,12]. Dysfunction and abnormality in mito-

chondrial dynamics, such as reduced mitochondrial mixing (fu-

sion) and increased mitochondrial fragmentation (fission), are

important factors related to the mitochondrial dysfunction, cell

death in aging [19], and neurodegenerative diseases, including

AD [20], PD [21], HD [22], and ALS [23]. Mitochondrial dysfunc-

tion is reflected by mtDNA damage and decrease in mitochondrial

function, mtRNA transcripts, and protein synthesis [18]. Mito-

chondrial functions are changed in brains of individuals with

specific neurodegenerative disorders [70,71]. In addition, dys-

function of ETC. complexes was involved in the pathogenesis of

chronic neurodegenerative diseases [72,73]. Regarding these data,

mitochondria considered as a potential target for pharmacologi-

cal-based therapies [92].

Figure 7 Limitation of the pathological

progression, neurodegeneration, and cell

death in ALS through increasing the PGC-1a

activity as a key regulator of the mitochondrial

biogenesis.
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Several lines of evidence demonstrate that mitochondrial bio-

genesis has a vital role in maintaining mitochondrial homeostasis

to meet the physiological requirements of eukaryotic cells [20].

Enhanced biogenesis is compatible with the mtDNA copy number

and increased mitochondrial gene expression contributed to mito-

chondrial biogenesis, including PGC-1a, PGC-1b, TFAM, NRF1,

NRF2, TFB1M, and PPAR-c [89]. Accordingly, the impaired mito-

chondrial biogenesis is associated with the mitochondrial dysfunc-

tion and has a significant role in the pathogenesis of the

neurodegenerative disorders [148]. Overall, this data demon-

strated induction or improvement of mitochondrial biogenesis

alleviates mitochondrial dysfunction and may confirm a modern

neuroprotective approach in the near future [91]. Altogether, it is

strongly suggested that fine-tuning of transcriptional activities of

the mitochondrial biogenesis regulators within the CNS may rep-

resent attractive approaches to limit the progression of neurode-

generative diseases.
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