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Abstract

Infection rates after arthroplasty surgery are between 
1-4 %, rising significantly after revision procedures. To 
reduce the associated costs of treating these infections, and 
the patients’ post-operative discomfort and trauma, a new 
preventative method is required. High intensity narrow 
spectrum (HINS) 405  nm light has bactericidal effects 
on a wide range of medically important bacteria, and it 
reduced bacterial bioburden when used as an environmental 
disinfection method in a Medical Burns Unit. To prove its 
safety for use for environmental disinfection in orthopaedic 
theatres during surgery, cultured osteoblasts were exposed 
to HINS-light of intensities up to 15 mW/cm2 for 1 h (54 J/
cm2). Intensities of up to 5 mW/cm2 for 1 h had no effect on 
cell morphology, activity  of alkaline phosphatase, synthesis 
of collagen or osteocalcin expression, demonstrating that 
under these conditions this dose is the maximum safe 
exposure for osteoblasts; after exposure to 15 mW/cm2 
all parameters of osteoblast function were significantly 
decreased. Viability (measured by protein content and 
Crystal Violet staining) of the osteoblasts was not influenced 
by exposure to 5 mW/cm2 for at least 2 h. At  5 mW/cm2  
HINS-light is an effective bactericide. It killed 98.1 % 
of Staphylococcus aureus and 83.2 % Staphylococcus 
epidermis populations seeded on agar surfaces, and is 
active against both laboratory strains and clinical isolates 
from infected hip and knee arthroplasties. HINS-light could 
have potential for development as a method of disinfection 
to reduce transmission of bacteria during arthroplasty, with 
wider applications in diverse surgical procedures involving 
implantation of a medical device.

Keywords: Healthcare associated infections (HAI); High-
intensity narrow-spectrum (HINS) light; disinfection; 
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Introduction

Healthcare associated infections (HAI), defined as 
infections which are not present at the time the patient 
enters hospital, are an ever increasing problem in modern 
healthcare affecting approximately 1 in 10 patients 
admitted to UK hospitals (Reilly et al., 2007). Despite 
current attempts to resolve the problem, including 
campaigns to improve hygiene in hospitals, particularly 
hand washing, HAI still causes significant patient 
mortality. A report published by the House of Commons 
in 2004 found that HAIs are responsible for over 5,000 
deaths in the UK each year, and are a contributory factor 
in over 1,500 deaths (National Audit Office, 2004). In the 
USA, deaths associated with HAI in hospitals exceeded 
the number attributable to several of the top ten leading 
causes of death. A survey performed in 2002 found 1.7 
million patients with an HAI, of which 155,668 died 
(Klevens et al., 2007). The rise in prevalence of HAI can 
partly be attributed to the increased use of antibiotics 
leading to antibiotic resistant strains of many bacteria 
(McGowan, 1983). It is clear that novel approaches to 
bacterial inactivation are required.
	 HAI take many forms. The most common type 
of infection reported by the Scottish National HAI 
Prevalence Survey was found to be urinary tract 
infection (UTI), accounting for 17.9 % of cases (Reilly 
et al., 2008), with a major risk factor being the use of 
indwelling catheters. Surgical site infections (SSI) are 
the next most common, accounting for 16 %. The use of 
indwelling or implanted medical devices is increasing 
with technological advances, and so the incidence of 
device-related infection is increasing (von Eiff et al., 
2005). Taking infection acquired during hip replacement 
surgery as a specific example of HAI, studies have shown 
incidence rates from 1-5 %, increasing considerably after 
revision procedures (Ridgeway et al., 2005; Hamilton and 
Jamieson, 2008; Wilson et al., 2008). During mandatory 
surveillance of 22,160 hip replacement procedures 
taking place in England between April 2004 and March 
2005, Staphylococcus aureus was identified in 64 % of 
infections, 67 % of which were methicillin-resistant strains 
(Wilson et al., 2008). Staphylococcus epidermidis has 
also been identified in a large number of cases (Hamilton 
and Jamieson, 2008). The source of these infections 
is many-fold. Patient skin will contribute, but general 
contamination of the operation site and equipment is a 
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major issue. This is particularly well documented in a 
paper by Davis and co-workers from Manchester, UK, 
reporting that 63 % of operations showed contamination 
of the field of operation (Davis et al, 1991). A reduction 
in the bacterial load will therefore be beneficial. Laminar 
flow ventilation, by which a continuous flow of highly 
filtered bacteria-free air is recirculated under positive 
pressure into the operating field and air contaminants 
generated during surgery are removed from the site, was 
introduced to orthopaedic operating theatres in the 1980s. 
However, even with modern laminar flow ventilation, 
unacceptably high numbers of bacterial isolates are still 
reported during orthopaedic surgery (Owers et al., 2004), 
and at the British Hip Society meeting in 2011 McGovern 
and colleagues demonstrated how easily laminar air flow 
can be significantly disrupted by external forces during 
orthopaedic surgery (McGovern et al, 2011). Ultraviolet 
(UV) light in the operating theatres is more effective 
than laminar flow ventilation at reducing the number of 
airborne bacteria, and Ritter et al. (2007) reported that UV 
radiation reduced the risk of infection in joint replacement 
procedures from 1.77 to 0.57 %. Despite this effect, UV 
radiation has not been widely used in the UK as the 
protective clothing required by operating staff is deemed 
to be too hot, thick and uncomfortable for routine use 
(Godsen et al., 1998).
	 High-intensity narrow-spectrum (HINS) light is a new 
disinfection method that utilises the phototoxic effect of 
405 nm visible blue light without the need for additional 
photosensitiser molecules (Anderson et al., 2006; 
Anderson et al., 2007). Although not as bactericidal as 
UV light, 405 nm light has advantages including increased 
human safety due to its lower photon energy (Blatchley 
and Peel, 1991). Previous studies have demonstrated that 
this 405  nm blue light can inactivate various bacteria, 
including Staphylococcus aureus, methicillin-resistant 
S. aureus (MRSA), S. epidermidis and Escherichia coli 
(Guffey and Wilborn, 2006; Maclean et al., 2008a; Maclean 
et al., 2009). The mechanism of bacterial inactivation 
is thought to be by photostimulation of endogenous 
intracellular porphyrins, which leads to the generation of 
reactive oxygen species (ROS) (Orenstein et al., 1997; 
Papageorgiou et al., 2000; Guffey and Wilborn, 2006; 
Maclean et al., 2008b). Exposure to 405 nm light at doses 
that inactivate S. epidermidis has been shown to not affect 
the viability of fibroblasts in vitro, or their contractile 
activity in a wound healing model – the fibroblast populated 
collagen hydrogel lattice (McDonald et al., 2011).
	 The use of 405  nm HINS-light for environmental 
disinfection has undergone clinical evaluation in occupied 
patient isolation rooms in Glasgow Royal Infirmary, where 
it was used as a background lighting system to provide 
continuous disinfection of air and exposed surfaces in the 
presence of patients and staff. The results demonstrated a 
significantly greater reduction in levels of environmental 
contamination than was achievable by normal disinfection 
control methods alone (Maclean et al., 2010). It is proposed 
that 405 nm HINS-light has considerable potential to reduce 
the environmental airborne bacterial load in orthopaedic 
operating theatres, and decrease the risk of post-operative 
infection following arthroplasty procedures. To assess 

the efficacy of 405 nm HINS-light for this application, 
the susceptibility of bacterial isolates from clinical cases 
of surgical site infections from arthroplasty procedures to 
HINS-light was assessed. To ensure in principle that any 
exposed patient bone tissue would not be detrimentally 
affected by exposure to lethal doses of 405 nm HINS-light, 
the effect of exposure of osteoblasts in vitro to bactericidal 
doses of HINS-light was determined in terms of viability, 
morphology and function. Osteoblast functions were 
assessed by alkaline phosphatase (ALP) activity, collagen 
synthesis and osteocalcin expression.

Materials and Methods

Culture and 405 nm light exposure of osteoblasts
The effect of 405  nm HINS-light was determined on 
immortalised neonatal rat calvarial osteoblasts cultured 
in Dulbecco’s Modified Eagle’s Medium (DMEM) 
supplemented with 10 % v/v foetal calf serum, 1 % v/v 
non-essential amino acids, penicillin (50 units/mL) and 
streptomycin (50 μg/mL). Cells were routinely cultured as 
monolayers in 75 cm2 tissue culture flasks in a humidified 
atmosphere of 5 % CO2 in air at 37 °C. For experimental 
use, the required cell concentration was prepared in 
complete DMEM and seeded onto the surface of multi-
well plates (0.2 mL for 96-well plates; 1 mL for 24-well 
plates), with the seeding density used (5×103  cells/cm2 
or 2×104 cells/cm2) determined by the post-exposure test 
being performed. After seeding, cells were incubated for a 
minimum of 4 h to allow attachment, and then the culture 
medium was replaced with Dulbecco’s phosphate buffered 
saline (PBS) for 405 nm HINS-light exposure.
	 The HINS-light system consisted of a bank of nine 
narrow-band LEDs (GE Lumination, Cleveland, OH, 
USA), with peak output at 405 nm and a 20 nm bandwidth at 
full-width half-maximum, attached to a heat sink supported 
by two pillars above a moulded base which centralises 
the position of the treatment dish. The distance between 
the sample and the LEDs was 8 cm. This short distance 
was chosen to optimise chances of seeing any deleterious 
effects of the HINS-light exposure in the experimental set 
up. The heat sink ensured that the operating temperatures 
remained constant for the duration of the light treatments, 
and no heating of samples occurred. Cells were exposed 
to 1 h durations of 405 nm light with irradiance levels of 
0.5, 1.8, 5 and 15 mW/cm2, corresponding to doses of 1.8, 
6.5, 18 and 54 J/cm2. Control cells that were not exposed to 
HINS-light were incubated in PBS for an equivalent time. 
The effect of prolonged exposure times was investigated 
for up to 3 h in terms of cell viability. After exposure, PBS 
was removed and the cells were incubated in fresh media 
until required for assessment of osteoblast function, with 
media being refreshed every 2-3 days for the duration of 
the experiment.

Markers of osteoblast function
Cells were seeded at 2×104 cells/cm2 in 96-well plates 
for measurement of alkaline phosphatase (ALP) activity, 
collagen synthesis and osteocalcin expression. ALP activity 
was measured at 24 and 72 h post-exposure to 405 nm 
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HINS-light at irradiances between 0.5 and 15 mWcm2 by 
the dephosphorylation of p-nitrophenyl phosphate (pNPP; 
1 mg/mL). DMEM was removed, wells washed with PBS, 
and 200 µL of 1 mg/mL pNPP in 0.1 M glycine buffer, 
pH 10.4, containing 1 mM MgCl2 and 1 mM ZnCl2, added to 
each well. pNPP is dephosphorylated to p-nitrophenol and 
phosphate in the presence of ALP, and the resultant release 
of p-nitrophenol was detected at 405 nm immediately and 
15 min after addition and calculated using the extinction 
coefficient of p-nitrophenol (18.75 mM/cm) (Bowers and 
McComb, 1966).
	 Collagen synthesis by the osteoblasts was assessed by 
the method of Walsh et al. (1992). At 24 and 72 h post-
exposure to 405 nm HINS-light at irradiances between 0.5 
and 15 mWcm2, the cells were fixed by Bouin’s solution, 
and stained with picrosirius red stain for 1 h. Following a 
wash with 0.01 M HCl, cells were solubilised in 0.25 M 
NaOH, and the absorbance quantified at 550 nm using a 
standard curve obtained with collagen type I. Picrosirius 
red staining was also used to visualise the cells using the 
above procedure carried out on cells cultured on 10 mm 
diameter glass slides in 24-well plates at the same seeding 
density. Instead of solubilising the cells post-staining, 
they were visualised with bright field microscopy (Zeiss 
Axioimager microscope; Zeiss, Oberkochen, Germany).
	 Osteocalcin secreted into the medium 3, 6 and 10 
days after exposure of cells to 405  nm HINS-light at 
irradiances between 1.8 and 15 mWcm2 was measured 
with an ELISA kit (BT-490, Biomedical Technologies, 
Stoughton, MA, USA) according to the manufacturer’s 
instructions. Production of osteocalcin by the osteoblasts 
was maximised by treating the cells for 3 days with 10-8 M 
1,25-dihydroxy vitamin D3 (Martinez et al., 2001).
	 Scanning electron microscopy was carried out on 
2×104/cm2 cells cultured on 10 mm diameter poly-l-lysine 
coated glass slides. Immediately after exposure to 405 nm 
HINS-light cells were fixed with 2.5 % glutaraldehyde, 
then treated with 1 % osmium tetroxide and uranyl 
acetate, before being critical point dried through a series 
of alcohols, sputter coated with a gold/palladium mixture 
and viewed at magnifications ranging from ×250 to ×30000 
at 10 kV.

Measurement  of viability
The total protein content  of the osteoblasts attached to 
the culture dishes was determined 2 and 3 days after 
exposure to  5 mW/cm2 HINS-light for between 1 and 3 h. 
After seeding at 5×103 cells/cm2 in 24-well plates the total 
protein was measured by the Lowry assay (Lowry et al., 
1951) after solubilising the cells in 0.5 M NaOH overnight. 
Crystal violet staining of cellular DNA in attached cells was 
quantified after fixing the cell monolayers with formalin, 
for 30 min followed by staining with 1 mg/mL Crystal 
Violet for 20 min. The stain was solubilised with 0.1 % 
Triton X-100 in PBS for 24  h on a rotary plate before 
measuring the absorbance at 540 nm.

Culture and 405 nm HINS-light exposure of bacterial 
pathogens
Culture collection strains of Staphylococcus aureus NCTC 
4135 and Staphylococcus epidermidis NCTC 11964 were 

obtained from the National Collection of Type Cultures 
(Collindale, UK). Clinical bacterial isolates used in 
this study were Staphylococcus aureus, Staphylococcus 
epidermidis, Corynebacterium striatum, Enterococcus 
faecalis, Micrococcus sp., Escherichia coli, Klebsiella 
pneumoniae, Serratia marcescens and Pseudomonas 
aeruginosa. All clinical isolates were isolated from infected 
hip and knee arthroplasties, and were obtained from the 
Southern General Hospital Microbiology Department 
(Glasgow, UK).
	 For experimental use, bacterial species were inoculated 
into 100 mL broth (Oxoid/Thermo Fisher Scientific, 
Basingstoke, UK) and incubated at 37  °C for 18  h 
under rotary conditions (120  rpm). All microorganisms 
were cultured in Nutrient Broth (Oxoid/Thermo Fisher 
Scientific) with the exception of C.  striatum, which 
was inoculated in Brain Heart Infusion Broth (Oxoid/
Thermo Fisher Scientific). After incubation, cultures were 
centrifuged at 3939 × g for 10 min and the microbial cell 
pellet was then re-suspended in 100 mL PBS. Bacterial 
suspensions were diluted to a population density of 103 
colony-forming units per millilitre (CFU/mL). For 405 nm 
light exposure, 100 µL microbial suspensions were seeded 
onto agar plates, providing a population of approximately 
100-300 CFU/agar plate. Nutrient agar was used for all 
bacterial species except C. striatum, which was seeded 
onto blood agar (Oxoid/Thermo Fisher Scientific).
	 For exposure of S. aureus NCTC 4135 and S. epidermidis 
NCTC 11964, the 405 nm HINS-light source used was the 
same as that used for exposure of the osteoblast cells. 
Microbial samples were exposed to 1  h durations of 
405 nm light with an irradiance level of 5 mW/cm2 (~18 J/
cm2). Post-exposure, plates were incubated at 37  °C for 
24 h before enumeration. Results represent the mean of 
a minimum of triplicate replicates, and are reported as 
the percentage of surviving CFU/plate, as compared to 
non-exposed control samples. To determine the biocidal 
activity of 405 nm HINS-light against the range of clinical 
infected arthroplasty isolates, a 405 nm LED array with 144 
LEDs (Enfis/Photonstar Technology, Romsey, Hampshire, 
UK) was used which provided an average irradiance 
of 71 mW/cm2 across the diameter of the agar surface. 
This higher power 405 nm light source provided higher 
irradiance, thereby providing a more rapid and convenient 
exposure system for determination of the susceptibility of 
the range of arthroplasty isolates to 405 nm light. Isolates 
seeded on the agar surfaces were exposed to increasing 
durations of light treatment (between 2.5 min to 1 h), and 
non-exposed control plates were set-up for all samples. As 
with the culture collection isolates, results are reported as 
the percentage of surviving CFU/plate, as compared to 
non-exposed control samples.

Statistical analysis
Data were compared by ANOVA followed by Dunnett’s 
post-hoc test, unless otherwise stated, and significance was 
assigned at p < 0.05.
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Results

Effect of 405 nm HINS-light exposure on osteoblast 
function
The function of osteoblasts following exposure to 405 nm 
HINS-light was monitored by ALP activity and by the 
ability to synthesise collagen and osteocalcin.
	 A 1 h exposure to intensities of 405 nm HINS-light at or 
below 5 mW/cm2 (18 J/cm2) caused no significant reduction 
in activity of ALP at 24 h post-exposure. Intensities above 
5 mW/cm2 caused a statistically significant decrease in 
ALP activity. By 72 h post-exposure, osteoblasts treated 
at 15 mW/cm2 showed minimal signs of recovery. Cells 
exposed to 5 mW/cm2 HINS-light and below did not show 
a significant decrease in ALP activity compared with the 
control at 72 h post-exposure (Fig.1).
	 Differential interference contrast (DIC) microscopy 
images of control cells and cells exposed to 1 h of 15 mW/
cm2 HINS-light stained with picrosirius red for the presence 
of collagen are shown in Fig. 2 (A) and (B) respectively. 
Microscopy was performed at 48 h following exposure. 
Osteoblasts exposed to 15 mW/cm2 retained the elongated 
shape of healthy osteoblasts and no obviously damaged 
cells were present in the sample. Collagen synthesis was 
not affected by exposure to up to 5 mW/cm2 HINS-light, 
at either 24 or 72 h post-exposure. A significant decrease 
in synthesis was shown in osteoblasts exposed to 15 mW/
cm2 HINS-light at 24 h post-exposure, and this significant 
decrease persisted at 72 h post-exposure (Fig. 3) with no 
sign of recovery.
	 No decrease was observed in osteocalcin expression by 
osteoblasts exposed to 5 mW/cm2 or lower HINS-light for 

1 h at up to 10 days post-exposure. However, expression 
was significantly suppressed in osteoblasts exposed to 
HINS-light intensities of 15 mW/cm2 for 1 h at 3 and 6 
days post-exposure (Fig. 4). By 10 days post-exposure, 
expression of osteocalcin in cells exposed to 1 h of 15 mW/
cm2 was not significantly different from the control.
	 To detect any effects on cell morphology, scanning 
electron microscopy was performed on cells immediately 
following a 1  h exposure to 5 and 15 mW/cm2 HINS-
light. Cells that had not been exposed to HINS-light had 
classic osteoblast morphology (Fig. 5A). They appear 
well attached and stretched out, and high magnification 
images of individual cells showed no remarkable surface 
features. Osteoblasts exposed to 1  h at 5  mW/cm2 
appeared to be similar to the controls (Fig. 5B), but after 
exposure to 15 mW/cm2 they had a noticeably different 
appearance compared to control cells (Fig. 5C). Although 
the cell density appeared similar, the proportion of cells 
that were attached and stretched out was less. Higher 
magnification images of the cell surface showed many 
small imperfections, like cuts or folds in the membrane, 
suggesting some sub-lethal effects on the cells (Fig. 5C). 
A summary of the effects of the maximum dose (15 mW/
cm2 for 1 h) of HINS-light on the cells is shown in Table 
1.
	 Having determined that exposure to 5 mW/cm2 for 
1 h was a safe dose of 405 nm HINS-light in terms of the 
osteoblast functions, cells were exposed to this irradiance 
level of light for up to 3  h to establish the maximum 
duration this irradiance of light could be used safely. 
Viability of the cells in culture was measured 48 and 72 h 
post-exposure by both total protein content and DNA 

Fig. 1. ALP expression at 24 (♦) and 72 (■) hours post-exposure of osteoblasts treated at between 0.5 and 15 mW/
cm2. * indicates significant difference from control (p < 0.05, ANOVA followed by Dunnett’s comparison, n = 3 
independent experiments ± SEM). Note that the data at 24 h should be read off the y axis on the right of the graph, 
and those for 72 h from the axis on the left of the graph.
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Fig. 2. DIC microscopy images of osteoblasts stained with picrosirius red. Image (A) and (B) show control cells and 
those exposed to 15 mW/cm2 HINS-light for 1 h, respectively, at 48 h post-exposure.

Fig. 3. Collagen synthesis by osteoblasts exposed to HINS-light. Cells were exposed to (from left to right at each 
time point); control, 0.5 mW/cm2, 1.8 mW/cm2, 5 mW/cm2 and 15 mW/cm2 for 1 h. * indicates significant difference 
from control (p < 0.05, ANOVA followed by Dunnett’s comparison, n = 3 independent experiments ± SEM).

staining with Crystal Violet in attached cells. Data in Fig. 
6 show that cells tolerated exposure to 5 mW/cm2 HINS 
light for up to 120 min without significant loss of viability, 
but 3 h exposure resulted in a significant difference in the 
number of viable attached cells compared with the cells 
exposed for 60 min.

Effect of 405 nm HINS-light exposure on bacterial 
pathogens
Osteoblast exposure determined that 1  h exposure to 
5 mW/cm2 light was non-detrimental to the osteoblast cells. 
Experiments were carried out to assess whether this level 
of exposure could induce a bactericidal effect in S. aureus 
and S. epidermidis. Results, shown in Table 2, demonstrate 
that exposure to 5 mW/cm2 for 1 h successfully reduced 
bacterial contamination, with a 98 % and 83 % reduction 

in population achieved with S. aureus and S. epidermidis, 
respectively.
	 Exposure of a range of clinical isolates from infected 
arthroplasties demonstrated that 405  nm HINS-light 
has a non-selective bactericidal effect, with successful 
inactivation achieved across a wide range of Gram-positive 
and Gram-negative species (Fig. 7A and B, respectively). 
Inactivation of Gram-positive species appeared to occur 
at a slightly faster rate with >90 % inactivation occurring 
between 5-30 min, compared to 10-60 min for the Gram-
negative species. When comparing the inactivation data 
for the clinical S. aureus and S. epidermidis isolates with 
those of the culture collection isolates it can be seen that 
use of the higher irradiance of 71 mW/cm2 resulted in much 
faster inactivation than when using the lower 5 mW/cm2 
irradiance; 90-100 % inactivation in 5-10 min compared 
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to 80-100 % after 1 h. These results demonstrate that the 
higher the irradiance of 405 nm light, the faster the rate of 
bacterial inactivation that can be achieved.

Discussion

The results of this study demonstrate that intensities of 
HINS-light of 5 mW/cm2 and below applied over 1  h, 
do not have a significant effect on osteoblast function in 
terms of ALP activity, collagen synthesis and osteocalcin 
secretion. It is important to state that in all experiments 
carried out on osteoblasts in this study, culture medium 
was replaced with phosphate buffered saline (PBS) for 
the duration of HINS-light exposure due to possible 
generation of ROS in the culture medium. Cell viability 
has been shown to be significantly reduced by exposure 
to visible and near-UV radiation when exposed in culture 
medium compared to PBS (Stoien and Wang, 1974; Smith, 
2009). The main component of culture medium responsible 
for ROS generation has been shown to be riboflavin, 
with tryptophan, tyrosine, pyridoxine and folic acid all 
enhancing the effect (Grzelak et al., 2001).
	 In vitro, ALP activity is well established as a measure 
of osteoblast ability to synthesise bone (Hoemann et al., 
2009), and it is encouraging to find that exposure to 5 mW/
cm2 for 1 h has no inhibitory effect on the activity either 
immediately, or after 24 or 72 h post-exposure. As the 
intensity was increased from 5 to 15 mW/cm2 significant 
decreases relative to control values were observed at both 
24 and 72 h post-exposure. The effect of blue light on ALP 
activity has not previously been investigated in osteoblasts. 
Low doses of red laser light have been shown to be without 
significant effect (Khadra et al., 2005) but inhibition at 

high doses (2 J/cm2) of light at a wavelengths of 670 nm 
has been reported (Stein et al., 2005).
	 Collagen synthesis is an essential aspect of bone matrix 
formation by osteoblasts, and the effects of 405 nm HINS-
light exposure on this parameter were found to be similar 
to the effect on ALP activity. Exposure to intensities of 
up to 5 mW/cm-2 for up to 1 h had no significant effect 
on the ability of osteoblasts to synthesise collagen, while 
exposure to higher intensities significantly reduces this 
function. Although collagen synthesis has been shown to 
be both stimulated (Stein et al., 2005; Saracino et al., 2009) 
and inhibited (Marques et al., 2004) by laser irradiation, 
there are no studies in the literature using an equivalent 
irradiance of light to that used in the present study. Staining 
of the collagen with picrosirius red and visualising the 
stained cells by microscopy proved not to be sensitive 
enough to detect the inhibition of synthesis in the cells, 
but revealed the morphology of the cells post-exposure 
to 405 nm HINS-light very clearly. There was no visible 
evidence of a change in cell morphology, or the presence 
of apoptotic cells.
	 Osteocalcin is the most abundant non-collagenous 
protein produced by osteoblasts, and studies on knock-out 
mice suggest that it has osteogenic regulatory functions 
(Ducy et al., 1996). The ELISA kit used in this study 
has been shown to be an effective reliable method for 
determining osteogenic potential (Nakamura et al., 
2009). As reported previously, osteoblasts did not secrete 
measurable amounts of osteocalcin without stimulation 
with the hormone 1,25-dihydroxy vitamin D3 (Carpenter 
et al., 1998). Expression of osteocalcin is lower during the 
log phase of growth of the osteoblasts, and at maximum 
levels once the cells have reached confluence as reported 
previously (Owen et al., 1991). Measuring osteocalcin 
production 3 days after exposure showed that 405  nm 

Fig. 4. Osteocalcin expression following 1 h HINS-light exposure. From left to right at each timepoint; control, 
1.8 mW/cm2, 5 mW/cm2, 15 mW/cm2. * indicates significant difference from control (p < 0.05, ANOVA followed 
by Dunnett’s comparison, n = 3 independent experiments ± SEM, except for control and 15 mW/cm2 samples on 
days 3 and 6 where n = 6).
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Fig. 5. SEM micrographs showing the effect of a 1 h exposure to 5 and 15 mW/cm2 (B and C) HINS-light on 
osteoblast morphology. Control (A). Scale bars are 5 µm.

Fig. 6. Viability of osteoblasts 
following exposure to 5 mW/
cm2 HINS-light for 1, 2 and 
3  h. A shows the Crystal 
Violet staining of cultures 
incubated in the presence of 
5 mW/cm2 HINS-light, and 
control cultures incubated in the 
absence of HINS-light. B shows 
the protein content of cultures 
incubated in the presence of 
5 mW/cm2 HINS-light, and 
control cultures incubated in 
the absence of HINS-light. 
(*p  <  0.05, unpaired student 
t-test, comparing the controls 
and HINS light treated samples 
after the same exposure time, 
n = 4 independent experiments 
± SEM).



211 www.ecmjournal.org

RS McDonald et al.                                                                            405 nm light exposure of osteoblasts and bacteria

HINS-light doses of up to 5 mW/cm2 did not significantly 
affect expression, whereas exposure to 15 mW/cm2 caused 
a significant reduction, from which the cells had recovered 
10 days after exposure. There are no data in the literature 
on the effect of blue light on osteocalcin expression in 
osteoblasts, but near-UV laser irradiation has been shown 
to stimulate osteocalcin production in human osteoblasts 
(Khadra et al., 2005).
	 SEM analyses showed that exposure to 5 mW/cm2 did 
not cause any visible difference to the cell morphology 
compared to control cells, and the density of the cells was 
not significantly reduced. However, after the osteoblasts 
were exposed to 15 mW/cm2 for 1 h there was undoubtedly 
some disturbance caused to the membrane of the cells. The 
resolution of the images is not high enough to identify the 
features, but they may represent the initial stage of bleb 
formation. The decrease in surface area observed after 
exposure to 15 mW/cm2 HINS-light confirms an effect on 
the cells, and may represent the shrinking associated with 
apoptosis. A lesser percentage of cells in this group had the 
stretched morphology and associated large surface seen in 
the control cells.
	 The results demonstrate that 405 nm HINS-light has a 
dose dependent effect on osteoblast function. They imply 
that irradiances of up to 5 mW/cm2 delivered over a period 
of 2 h should not cause damaging effects to osteoblasts 
during procedures such as hip replacement, which result 
in exposure of bone surfaces to the external environment. 
The time required for implantation of a primary hip 
arthroplasty is approximately 1 h surgery, and a revision 
operation is considerably longer; 2 to 2.5 h depending on 
the complexity of the case. The data shown here illustrate 
that exposure to HINS-light, under the conditions used 
for up to 120 min, does not significantly alter osteoblast 
viability. However, we recognise that the cells used were 
derived from rat tissue, and there may be differences in 
the responses of human cells.
	 Despite the finding that a 1  h exposure to 15 mW/
cm2 irradiance HINS-light has detrimental effects on 

osteoblast function, this may have no significant bearing 
on bone formation or osseointegration of implants during 
use of the light in a surgery environment. Light of 405 nm 
wavelength will not penetrate deeply into bone. Penetration 
of the visible light spectrum into tissue increases with 
wavelength, with red light penetrating the skin to 6 mm, 
and shorter wavelength blue light only penetrating up to 
2 mm (Fernandez-Guarino et al., 2007). Macrene (2006) 
also showed that 50 % of red light photons (wavelength 
800 nm) would penetrate 20 mm into soft tissue, compared 
with 80 μm for photons of 255 nm UV light. Although 
data on the penetration of blue light are not available, 
porcine studies have shown that a 4.3 mW/cm2 laser of 
635 nm light penetrates 1.6 ± 0.4 mm into trabecular bone 
(Bisland and Burch, 2006). Any damage to osteoblasts in 
this context would therefore only occur on the bone surface, 
and would have only limited effects on osseointegration 
of an implant. Osseointegration is not a surface process 
and, during total hip replacement, osseointegration of the 
femoral stem will take place deep within the cavity of 
the bone, where exposure to 405 nm HINS-light will be 
minimal. It is therefore unlikely that 405 nm HINS-light at 
the intensities and duration used in this study would cause 
any significant delay in osseointegration of implants.
	 It was important to establish that, whilst being non-
detrimental to the osteoblast cells, exposure to 5 mW/
cm2 405 nm HINS-light for 1 h was capable of inducing 
a bactericidal effect on bacterial contamination. S. 
aureus and S. epidermidis were selected for use due to 
their significance as causative pathogens of arthroplasty 
infections (Hamilton and Jamieson, 2008; Wilson et 
al., 2008), and at this dose bacterial kill of 98.1 % and 
83.2 % were obtained, respectively, demonstrating a 
potent bactericidal effect against the culture collection 
isolates. The bactericidal efficacy of HINS-light against 
clinical isolates from infected hip and knee arthroplasty 
tissue from the Southern General hospital in Glasgow 
was convincingly shown for a range of Gram-positive and 
Gram-negative bacteria. A comparison of the inactivation 

Fig. 7. Inactivation of a range of Gram positive (A) and Gram negative (B) clinical isolates from infected arthroplasties. 
Bacterial isolates were exposed on agar plate surfaces using 405 nm HINS-light with an average irradiance of 
71 mW/cm2.
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rates of the Gram-positive and Gram-negative bacteria 
reveals that, as reported previously (Maclean et al., 2009), 
Gram-positive bacteria are more susceptible to 405 nm 
HINS-light. The use of higher intensities of 405 nm HINS-
light to kill the clinical isolates proves the principle that 
clinical isolates as well as type cultures can be killed, and 
demonstrates that faster cell kill can be achieved with 
higher intensities of 405 nm HINS-light.
	 The experiments described in this study were carried 
out under closely defined laboratory test conditions and 
have established critical dose levels for safe exposure of 
osteoblast tissue to 405 nm light. For practical application, 
this dose level will be dependent on the irradiance from 
the light source, the distance from the treated tissue and 
the exposure time. It is anticipated that for the proposed 
practical application, 405 nm disinfecting light systems 
would have brightness characteristics similar to typical 
operating theatre lighting. Further work, involving close 
interaction with surgical staff, is required to translate these 
findings into the optimal design of a light-delivery system, 
which could potentially have application for directed 
continuous disinfection of the operating environment 
during real-time arthroplasty surgery.

Conclusions

405 nm HINS-light exposure for 1 h at 5 mW/cm2 does 
not significantly alter osteoblast morphology, function 
or viability. It is an effective bactericide for clinically 
relevant bacteria and was found to kill 98.1 % of 
Staphylococcus aureus and 83.2 % of Staphylococcus 
epidermis populations at this dose. These findings, along 
with the limited penetration of the light into tissues, 
suggest that 405  nm HINS-light at this exposure level 
could potentially be used for directed environmental 
disinfection in orthopaedic operating theatres. In fact, 
osteoblasts  exposed to 5 mW/cm2 for up to 2 h showed 
no loss of viability. For localised short duration exposure, 

such as during high risk surgical procedures, 405  nm 
HINS-light has potential to be used to reduce the number 
of airborne and surface bacteria in the area immediately 
surrounding a surgical site without damaging the exposed 
tissues, analogous to the results from environmental 
disinfection procedures already demonstrated in the Burns 
Unit of Glasgow Royal Infirmary. This visible light-
based technology has the potential significantly to reduce 
contamination, and consequently infection, in arthroplasty, 
and has applications in many diverse areas of surgery, 
particularly where medical devices are being introduced 
into the body.
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